日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

New Energy Vehicles

Wednesday
29 Jun 2022

Saving Time and Money in the Race to Create Better Batteries for the Electric Vehicle Revolution

29 Jun 2022  by azocleantech.com   
Scientists at the University of Michigan (U-M) have made the durability testing process of new electric vehicle battery designs four times quicker with a streamlined approach.


Wei Lu, a U-M professor of mechanical engineering cycling batteries in the Lu Lab at the George G. Brown Laboratories building on the North Campus of the University of Michigan in Ann Arbor. Image Credit: Brenda Ahearn, College of Engineering.

Their optimization framework can considerably decrease the cost of evaluating how battery configurations will function over the long pull.

The goal is to design a better battery and, traditionally, the industry has tried to do that using trial and error testing. It takes such a long time to evaluate.

Wei Lu, Professor, Mechanical Engineering, University of Michigan

Lu was behind the framework and also the leader of the research team. The study has been reported in the journal Patterns-Cell Press.

Electric vehicle (EV) battery manufacturers often struggle with a range of anxiety and worries regarding charging availability. Thus, the optimization system fabricated by Lu’s team could reduce the time for both physical testing and simulation of new and better batteries by around 75%.

That speed could be of significant advantage to battery developers looking for the correct combination of materials and configurations. This helps guarantee that consumers always have the capacity to reach their destinations.

As far as battery design is concerned, parameters include everything right from the materials utilized to the thickness of the electrodes to the size of the particles in the electrode and more.

Generally, testing each configuration implies several months of fully charging and then completely discharging—or cycling the battery—1,000 times to copy 10 years of use. It is extremely laborious to repeat this test through the huge number of possible battery designs to pick out the best ones.

Our approach not only reduces testing time, but it automatically generates better designs. We use early feedback to discard unpromising battery configurations rather than cycling them till the end. This is not a simple task since a battery configuration performing mediocrely during early cycles may do well later on, or vice versa.

Wei Lu, Professor, Mechanical Engineering, University of Michigan

Lu added, “We have formulated the early-stopping process systematically and enabled the system to learn from the accumulated data to yield new promising configurations.”

To achieve a sizable reduction in the time and cost, engineers from U-M combined the latest in machine learning to design a system that is well aware of both when to quit and how to get better as it goes.

The framework stops cycling tests that do not have a hopeful start and saves resources with the help of the mathematical methods called Asynchronous Successive Halving Algorithm and Hyperband. At the same time, it takes data from earlier tests and idedntifies new promising parameters to analyze with the help of Tree of Parzen Estimators.

Besides cutting off tests that run short of promise, a main time-saving element in U-M’s system is the way it produces multiple battery configurations to be tested simultaneously, called asynchronous parallelization.

If any configuration is done in testing or is being discarded, the algorithm instantly evaluates a new configuration to test without the necessity to wait for the outcomes of other tests.

The framework of U-M seems to be effective in testing all battery designs, from those utilized for decades to run internal combustion automobiles, to the smaller products that power the cell phones and watches. However, EV batteries might constitute the most pressing use of the technology.

“This framework can be tuned to be more efficient when a performance prediction model is incorporated. We expect this work to inspire improved methods that lead us to optimal batteries to make better EVs and other life-improving devices,” stated Changyu Deng, U-M doctoral student in mechanical engineering and first author of the paper.

A recent survey performed by Mobility Consumer Index displayed that 52% of consumers are currently taking an EV into account for their next vehicle purchase. Despite altering attitudes, concerns tend to remain over vehicle range (battery capacity) and the number of charging stations that are available to drivers.

Hence, battery performance has a vital role in bringing EVs to the masses as a way of offsetting the effects of climate change.

By significantly reducing the testing time, we hope our system can help speed up the development of better batteries, accelerate the adoption or certification of batteries for various applications, and expedite the quantification of model parameters for battery management systems.

Wei Lu, Professor, Mechanical Engineering, University of Michigan

The study was financially supported by the LG Energy Solution.

Keywords

More News

Loading……
国产偷国产偷精品高清尤物| 国产一区二区三区精品欧美日韩一区二区三区| 成人小视频在线观看| 色狠狠综合天天综合综合| 日本一二三区视频免费高清| 91精品在线观看入口| 一区二区三区久久久| 日本韩国欧美在线| 欧美日韩国产高清一区二区| 在线看你懂得| 欧美人与性动xxxx| 欧美日韩一区二区三区免费看| 亚洲色图在线播放| 青青操视频在线| 偷拍自拍亚洲| 92久久精品| 日韩精品福利一区二区三区| 欧美精品大片| 美腿丝袜亚洲图片| 日韩欧美中文字幕一区二区三区| 久久久9色精品国产一区二区三区| 九九九久久久精品| 爆操欧美孕妇| 午夜精品毛片| 在线免费观看日韩欧美| 国产精品亚洲一区二区在线观看| 久久久久久毛片| 宅男宅女性影片资源在线1| 日韩av免费| 久久成人福利| 久久福利影视| 国产精品高潮久久久久无| 日韩免费视频一区| 视频在线观看你懂的| 国产视频97| 国产网红在线| 99视频这里有精品| 亚洲免费观看高清完整版在线观看| 亚洲欧美另类图片小说| 日韩欧美国产wwwww| 日本不卡免费高清视频在线| 成人福利免费在线观看| 疯狂欧洲av久久成人av电影 | 香蕉视频官网在线观看日本一区二区| 欧美精品一二三| 欧美亚韩一区| 亚洲视频精品在线观看| 国产激情91久久精品导航| 一级片免费在线观看| 亚洲欧美大片| 91精品国产综合久久福利软件| 高h视频在线观看| 欧美人与牛zoz0性行为| 国产不卡高清在线观看视频| 欧美在线啊v一区| 美女100%一区| 亚洲图区在线| 在线综合亚洲| 亚洲成人av电影| 国产精品成人一区二区不卡| 欧美视频三区在线播放| 91精品视频网| 婷婷成人综合| 亚洲欧美国产三级| 欧美性大战久久久| 番号集在线观看| 日本91福利区| 99热.com| 成人福利视频在线| 亚洲三区欧美一区国产二区| 欧美日韩情趣电影| 99成人在线| 黄色的视频在线观看| 国产精品麻豆一区二区| 色大18成网站www在线观看| 久久久久中文| 伊人开心综合网| 国产精欧美一区二区三区蓝颜男同| 久久99精品国产| 成人在线高清免费| 激情婷婷综合| 久久99精品久久久久久| 欧美日韩国产三级| 欧美精品一区二区久久| yy4480电影网| 亚州国产精品| 午夜精品一区二区三区电影天堂 | 国产人伦精品一区二区| 免费在线看v| 国产精品天干天干在线综合| 丝袜连裤袜欧美激情日韩| 欧美一级在线免费| 欧美三级情趣内衣| 日韩欧中文字幕| 芒果视频成人app| 韩国视频一区二区| 国产综合视频一区二区三区免费| 精品综合免费视频观看| 里番在线播放| 美女www一区二区| 福利在线国产| 欧美成人中文| 91在线品视觉盛宴免费| 亚洲风情在线资源站| 深爱激情综合| 日韩一区二区免费电影| 夜夜精品视频| 三级网站视频在在线播放| 日韩精品五月天| 亚洲国产欧美日韩另类综合| 亚洲国产精品一区| 青青草视频在线免费直播| ●精品国产综合乱码久久久久| 色妞ww精品视频7777| 91人人网站| 中文字幕一区二区三区在线观看| 视频精品导航| 国产三级久久久| 欧洲在线一区| 青青色在线视频| 欧美国产成人精品| 久久精品色播| 欧美自拍偷拍午夜视频| 欧美偷拍综合| 国产尤物视频在线| 7777精品伊人久久久大香线蕉超级流畅| 99re亚洲国产精品| 国产精品186在线观看在线播放| 亚洲婷婷综合色高清在线| 精品国产91久久久久久浪潮蜜月| 美女胸又www又黄的网站| 超碰国产一区| 濑亚美莉vs黑人在线观看| 亚洲天堂中文字幕| 奇米色一区二区三区四区| aa国产精品| 午夜日韩电影| 婷婷综合视频| 亚洲精品97| 久久免费av| 国产精品videossex久久发布| 亚洲电影二区| 免费羞羞视频网站| 亚洲精品a级片| www.中文字幕久久久| 五月婷婷开心综合| 91一区二区在线| 国产videos久久| 黄毛片在线观看| 亚洲第一久久影院| 久久精品成人| 豆花视频一区二区| 怡红院av在线| 日韩欧美小视频| 羞羞视频网站在线观看| 日韩欧美在线观看视频| 久久www免费人成看片高清| 波多野结衣一区| 欧美国产亚洲精品| 亚洲精品国久久99热| 日韩福利电影在线观看| 日韩理论电影中文字幕| 永久免费在线| 337p亚洲精品色噜噜狠狠| 亚洲一区影音先锋| 亚洲视频中文字幕| 久久久精品一品道一区| 欧美日韩国产探花| 国产美女亚洲精品7777| 美女网站在线| 免费成人看片| 欧美网站一区二区| 亚洲成人精品一区二区| 久久久亚洲精品一区二区三区| 亚洲综合图色| 免费成人在线电影| 午夜视频在线看| 日韩午夜影院| a级片在线免费| 粉嫩久久久久久久极品| 成人久久网站| 婷婷激情一区| 国产精品99| 国产精品一区二区三区av| 在线观看免费版| 在线成人av网站| 亚洲欧洲性图库| 欧美亚洲动漫精品| 欧美综合一区二区| 欧美亚洲国产一区二区三区va| 欧美老女人在线| 啊啊啊射了视频网站| 国产网红女主播精品视频| 97欧美成人| 亚洲三级性片| 日韩成人视屏| 伊人久久大香线蕉综合网站 | 日韩av首页| 日本乱码一区二区三区不卡| 擼擼色在线看观看免费|