日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Hydrogen

Monday
20 Feb 2023

UNSW Team Develops Algorithm That Enhances Images of Hydrogen Fuel Cells Significantly

20 Feb 2023  by greencarcongress   

Researchers from UNSW Sydney have developed an algorithm which produces high-resolution modeled images from lower-resolution micro X-ray computerized tomography (CT). The new process, detailed in an open-access paper in Nature Communications, has been tested on individual hydrogen fuel cells to model the interior accurately in precise detail and potentially improve their efficiency.

Proton Exchange Membrane Fuel Cells (PEMFCs) can become inefficient if the water cannot properly flow out of the cell and subsequently ‘floods’ the system. Until now, it has been very hard for engineers to understand the precise ways in which water drains, or pools, inside the fuel cells due to their very small size and very complex structures.

The solution created by the UNSW researchers allows for deep learning to create a detailed 3D model by utilizing a lower-resolution X-ray image of the cell, while extrapolating data from an accompanying high-res scan of a small sub-section of it.



Top: 3D X-ray scan of a hydrogen fuel cell, showing carbon paper weaves, membrane and catalysts (in black). Scan provided by Dr Quentin Meyer. Bottom: 2D and 3D rendering of the segmented membrane electrode assembly with artificially overlayed flow channels. The gas channel and land contacting the GDL are labeled. Wang et al.

One of the reasons this research is so novel is that we are pushing the limit of what can be produced from imaging. It is very typical that when you use a piece of hardware, whether it’s a microscope or a CT scanner, the resolution of an image gets worse the more you zoom out.

Our machine learning technique resolves that problem, and the methodology is broadly applicable where any imaging is taking place, such as medical applications, or the oil and gas industry, or chemical engineering.

We have done preliminary super-resolution work with radiologists previously and we could surmise that by obtaining a higher resolution image from a larger field of view that it may be possible to diagnose diseases, such as tumour cells, earlier, when they are smaller.

—Professor Ryan Armstrong, co-corresponding author

The super-resolution algorithm, known as DualEDSR, improves the field of view by around 100 times compared to the high-res image.

During training and testing of DualEDSR, the algorithm achieved 97.3% accuracy when producing high-res modeling from low-res imagery. It also produced a high-resolution model in just 1 hour, compared to the 1188 hours (the equivalent of 50 days non-stop) it would have taken to obtain high-res images of the whole section of the fuel cell using a micro-CT scanner.

One limitation to the modeling process as detailed in the study is the fact the larger-scale low-res image and the smaller-scale higher-res image need to be taken at the same location, by the same machine.

These are known as Region of Interest scanners and are specialized pieces of equipment that may not currently be available at many facilities. However, the team hopes that further research will allow deep learning techniques to produce similar results in future when presented with images that were not taken at the same location and potentially not even using exactly the same instrument or material.
 




https://www.nature.com/articles/s41467-023-35973-8

Wang, Y.D., Meyer, Q., Tang, K. et al. Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning. Nat Commun 14, 745 (2023).
https://doi.org/10.1038/s41467-023-35973-8

Keywords

More News

Loading……
国产调教一区二区三区| av在线免费不卡| 天使萌一区二区三区免费观看| 欧美精品日韩| 一区二区国产精品| 轻轻草成人在线| 成人精品亚洲人成在线| 国产午夜精品在线观看| 亚洲精品伦理在线| 欧美在线综合视频| 精品久久久久久综合日本欧美 | 制服丝袜在线播放| 日本高清中文字幕在线| 黄色漫画在线免费看| 亚洲欧美在线综合| 少妇精品久久久| 99精品视频免费观看| 国内精品不卡在线| 国产午夜亚洲精品不卡| 欧美日韩性生活视频| 欧美mv日韩mv| 加勒比一区二区三区在线| av中文字幕电影在线看| 日韩激情欧美| 亚洲视频久久| a在线欧美一区| 午夜精品久久久久久久蜜桃app| 欧美精品乱码久久久久久| 中文字幕伊人| 波多野结衣中文字幕久久| 亚洲天堂av资源在线观看| 一级欧洲+日本+国产| 国产精品自在欧美一区| 亚洲综合在线第一页| 精品久久久久久综合日本欧美 | 亚洲二区在线观看| 欧美不卡在线视频| 老司机免费在线视频| av日韩久久| 激情欧美一区二区三区| aaa亚洲精品| 欧美伊人久久久久久久久影院| 老司机在线免费视频| 国产黄大片在线观看| 一道在线中文一区二区三区| 日韩国产在线一| 亚洲黄一区二区三区| 天天综合天天| 草草视频在线观看| 欧美gay男男猛男无套| 国产成人精品网址| 一本一道波多野结衣一区二区| а√最新版地址在线天堂| 中文字幕在线直播| 亚洲精品小说| 欧美激情一区二区三区| 日韩精品中文字幕一区| 美女91在线| 国产精品videosex性欧美| 91丝袜呻吟高潮美腿白嫩在线观看| 色婷婷久久久久swag精品| 深夜福利视频在线免费观看| 欧美成人xxxx| 久久狠狠婷婷| 色综合天天综合网天天狠天天| 日韩资源在线| 国内自拍欧美| 国产二区国产一区在线观看| 在线欧美日韩精品| aaa日本高清在线播放免费观看| 久久男人av| www.在线成人| 97超超碰碰| ww久久综合久中文字幕| 媚黑女一区二区| 色噜噜狠狠成人中文综合| 激情成人四房播| 欧美成人milf| 亚洲人成人一区二区在线观看| 国产特级毛片| 亚洲精选av| 99久久亚洲一区二区三区青草| 先锋影音在av资源看片| 日韩毛片免费观看| 毛片基地黄久久久久久天堂| 欧美三级日本三级少妇99| av成人福利| 校园激情久久| 精品视频在线视频| 色香欲www7777综合网| 美女视频黄免费的久久 | 高清av不卡| 久久er精品视频| 精品久久久久久久久久久久久久久久久 | 国产盗摄——sm在线视频| 国产一区视频在线观看免费| 日韩欧美在线观看| 美脚恋feet久草欧美| 免费国产亚洲视频| 精品欧美一区二区久久| 亚洲精品观看| 国产精品美女一区二区三区| 成人在线观看免费| 在线观看日韩av电影| 欧美日韩国产片| 精品国产亚洲日本| 欧美国产激情一区二区三区蜜月| 天天影院图片亚洲| 欧美日本三区| 91精品国产一区二区三区香蕉| 日韩午夜电影免费看| 26uuu久久综合| 日本视频在线观看| 蜜桃av噜噜一区| 曰韩少妇与小伙激情| 久久久久久影院| 欧美巨大另类极品videosbest | 蜜桃成人在线视频| 亚洲精品乱码| 天天操天天舔| 久久一区二区三区电影| 色综合久久中文综合久久97| 天天综合91| 欧美国产成人精品| 国产不卡人人| av不卡免费在线观看| 超碰在线网址| 国产91精品欧美| 午夜视频在线观看网站| 久久成人国产| 宅男视频免费在线观看视频| 亚洲小说欧美另类社区| 日韩一区二区高清| 色综合天天综合网中文字幕| 欧美午夜电影一区| 亚洲综合小说图片| 欧美日韩国产小视频在线观看| 欧美日韩导航| 在线亚洲+欧美+日本专区| 久久久久观看| 欧美精品国产精品| 91久久夜色精品国产按摩| 日韩一区二区在线观看视频播放| 日韩极品一区| www.麻豆| 国产日韩免费| 精品影院一区| 波多野结衣一区二区三区| 天堂av最新在线| 亚洲国产精品传媒在线观看| 快播电影网址老女人久久| 亚洲乱码国产乱码精品精98午夜| 经典三级一区二区| 黑人精品xxx一区一二区| 色婷婷av一区二区三区丝袜美腿 | 日韩一级二级| 偷拍一区二区三区四区| 蜜桃一区二区三区| 羞羞小视频视频| 日韩电影一区二区三区四区| √新版天堂资源在线资源| 91免费视频网| 国产黄色精品| 欧美私模裸体表演在线观看| 久久久久av| 免费理论片在线观看播放老| 99免费精品视频| 久久亚洲精品人成综合网| 欧美综合视频在线观看| 亚洲激情中文| 色哟哟在线观看| 91看片淫黄大片一级在线观看| 91精品xxx在线观看| 日本精品一级二级| 一区二区三区四区电影| 欧美日韩国产中文字幕在线| www国产亚洲精品久久麻豆| 精品视频在线播放一区二区三区 | 亚洲专区欧美专区| av文字幕在线观看| 一区二区视频免费在线观看| 猫咪成人在线观看| 国产区视频在线观看| 波多野结衣视频一区| 日韩三级网址| xxxx影院| 99精品欧美一区二区三区小说| 日本午夜精品久久久久| 日韩美女视频一区二区在线观看| 视频在线观看一区| 国产超碰精品| 欧美不卡在线视频| 久久婷婷激情| 在线影院av| 国产精品原创巨作av| 校园春色亚洲| 欧美激情一区二区三区不卡| 成人动漫一区| 午夜精品成人在线视频| ady日本映画久久精品一区二区|