日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Solar

Wednesday
19 Apr 2023

Using Machine Learning to Find Reliable and Low-Cost Solar Cells

19 Apr 2023  by techxplore   

Researchers at the University of California, Davis College of Engineering are using machine learning to identify new materials for high-efficiency solar cells. Using high-throughput experiments and machine learning-based algorithms, they have found it is possible to forecast the materials' dynamic behavior with very high accuracy, without the need to perform as many experiments.

The work is featured on the cover of the April issue of ACS Energy Letters.

Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy, said Marina Leite, associate professor of materials science and engineering at UC Davis and senior author on the paper. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices.

A primary challenge in the field is that the perovskite devices tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. The problem is to find which perovskites combine high-efficiency performance with resilience to environmental conditions.

Perovskites have a general structure of ABX3, where A is an organic (carbon-based) or inorganic group, B is lead or tin, and X is a halide (based on chlorine, iodine or fluorine or a combination). Therefore, "the number of possible chemical combinations alone is enormous", Leite said. Further, they need to be assessed against multiple environmental conditions, alone and in combination, which results in a hyperparameter space that cannot be explored using conventional trial-and-error methods.

"The chemical parameter space is enormous," Leite said. "To test them all would be very time consuming and tedious."

High throughput experiments and machine learning

As a first and key step towards solving thesechallenges, Leite and graduate students Meghna Srivastava and Abigail Hering decide to test whether machine learning algorithms could be effective when testing and predicting the effects of moisture on material degradation.

Srivastava and Hering built an automated, high-throughput system to measure the photoluminescence efficiency of five different perovskite films against the conditions of summer days in Sacramento. They were able to collect over 7,000 measurements in a week, accumulating enough data for a reliable training set.

They used this data to train three different machine learning algorithms: a linear regression model, a neural network and a statistical model called SARIMAX. They compared the predictions of the models to physical results measured in the lab. The SARIMAX model showed best performance with a 90 percent match to observed results during a window of 50-plus hours.

"These results demonstrate that we can make use of machine learning in identifying candidate materials and suitable conditions to prevent degradation in perovskites," Leite said. Next steps will be to expand the experiments to quantify combinations of multiple environmental factors.

The perovskite film itself is only a part of a complete photovoltaic cell, Leite said. The same machine learning approach could also be used to forecast the behavior of a complete device.

"Our paradigm is unique, and I am eager to see the upcoming measurements. Moreover, I am very proud of the students' diligence during the pandemic" Leite said.

Additional authors on the paper are Yu An and Juan-Pablo Correa-Baena, both from Georgia Tech.


More News

Loading……
日韩av地址| 夜久久久久久| 97品白浆高清久久久久久| 成人永久看片免费视频天堂| 免费久久99精品国产自在现线| 国产福利电影在线播放| 日韩欧美一级精品久久| 天天影视色香欲综合网老头| 一区二区三区免费网站| 精品二区三区线观看| 一本久道中文字幕精品亚洲嫩| 美女久久久精品| 日韩精品导航| 2023国产精品久久久精品双| 一区在线免费| 亚洲有吗中文字幕| 国内视频在线精品| 成人精品久久| 四虎成人精品永久免费av九九| 草草视频在线观看| 久久婷婷五月综合色丁香| 成人午夜影视| 成人免费高清观看| 一区二区三区日本视频| а√天堂8资源在线| 免费成人av电影| 女同一区二区免费aⅴ| 求av网址在线观看| 日韩av首页| 国产欧美日韩精品一区二区三区| 国产资源在线播放| 草美女在线观看| 成人资源在线| 制服诱惑一区二区| 丝袜美腿亚洲色图| 日本一区免费视频| 在线亚洲欧美| 国产精品美女久久久久av爽李琼| 99久久国产免费看| 99视频在线观看地址| 亚洲第一在线综合网站| 天天色天天草| 在线视频1区2区| 91精品国产自产精品男人的天堂 | 好了av在线| 亚洲91网站| 美女网站在线免费欧美精品| 日韩美女视频一区二区 | 巨骚激情综合| 国产精品17p| 极品少妇一区二区三区| 欧美激情综合| 亚洲欧洲视频| 成人性生交大片免费| 国产精品电影一区二区| 精品成a人在线观看| 午夜裸体女人视频网站在线观看| 国产在线精彩视频| 精品91视频| 精品成人av一区| 欧美四级在线| 一色桃子久久精品亚洲| 制服丝袜中文字幕亚洲| 日韩精品免费观看视频| 日本不卡视频在线| 欧美日韩精品综合在线| 日韩精品一区二区三区视频播放 | 天天夜夜亚洲| 一区二区中文字幕在线观看| 国产乱码字幕精品高清av| 久久国产高清| 国产精品久久久久久一区二区三区 | 国产精品久久久久久亚洲毛片| 精品久久久久久中文字幕一区奶水| 欧美猛男超大videosgay| 日本少妇一区| 美女网站视频久久| 欧美图区在线视频| 色8久久影院午夜场| 日本免费新一区视频| 天天操夜夜操夜夜操| 久久伦理中文字幕| 91污片在线观看| 很黄很污的网站| 国产精品一区二区精品| 欧美在线电影| 国产一区二三区| www.4438全国最大| 91精品国产乱码久久久久久久| 精品亚洲国内自在自线福利| 国产亚洲一卡2卡3卡4卡新区| 成人黄色av网址| 亚洲精品国产a| 有色激情视频免费在线| 中文字幕这里只有精品| 成人18视频日本| 麻豆传媒在线免费| 狠狠色狠狠色综合| 久蕉在线视频| 日韩av一二三| 尤物网站在线| 久久国产综合精品| 秋霞影院午夜丰满少妇在线视频| 日韩激情精品| 2020日本不卡一区二区视频| 北岛玲一区二区三区| 国产福利一区二区三区在线视频| 日韩小视频在线观看专区| 咪咪网在线视频| 亚洲图片自拍偷拍| 亚洲桃色综合影院| 欧美一区二区人人喊爽| 欧美丝袜丝交足nylons172| 欧美一区二区三区在线看| 88在线观看91蜜桃国自产| 黄色羞羞视频在线观看| 18成人在线观看| 亚洲国产中文在线| 日韩欧美主播在线| 羞羞的视频在线观看| 国产一区二区三区在线观看免费| qvod激情图片| 日韩高清不卡在线| 欧美极品影院| 欧美成人艳星乳罩| 色棕色天天综合网| 亚洲女优视频| 国产欧美视频一区二区三区| 加勒比色综合久久久久久久久| 精品国产成人系列| 美女视频黄 久久| 久久夜色电影| 直接在线观看的三级网址| 成人综合婷婷国产精品久久免费| 在线观看中文字幕的网站| 欧美亚洲动漫另类| 不卡av免费在线观看| 台湾色综合娱乐中文网| 精品视频999| 亚洲wwww| 国产乱xxⅹxx国语对白| 成人午夜免费电影| 国产精品2023| 在线中文字幕资源| 欧美精品第1页| 污视频在线看网站| 色一情一乱一乱一91av| 日韩中文字幕亚洲一区二区va在线 | 日韩欧美国产高清91| 日韩成人免费在线| 欧美影院视频| 麻豆网站在线看| 91精品国产综合久久香蕉麻豆| 日韩激情在线| 刘亦菲一区二区三区免费看| 男女午夜视频在线观看| 香蕉加勒比综合久久| 日韩激情免费| 国产wwww| |精品福利一区二区三区| 欧美涩涩视频| 亚州综合一区| 国产精品.xx视频.xxtv| 欧美色图另类| 免费高清av| 婷婷综合在线观看| av在线一区二区| 青青草精品视频| 欧美高清视频看片在线观看| av福利精品| 精品奇米国产一区二区三区| 好吊成人免视频| 1000部国产精品成人观看| 国产成人av一区二区三区在线| 在线成人av观看| 国产原创视频在线观看| 暖暖视频在线免费观看| 亚洲午夜一区二区| 国产亚洲成av人在线观看导航| 日韩高清影视在线观看| 尤物yw193can在线观看| www.国产精品.com| 最近中文字幕mv免费高清在线| 日韩美女一级视频| 日韩精品一区国产麻豆| 欧美日本一区二区三区| 色婷婷av久久久久久久| 日本韩国欧美在线| 欧洲亚洲精品在线| 色婷婷综合久久久久中文| 国产高清不卡二三区| 国产精品一区二区在线看| 在线日韩一区| 欧美理伦片在线播放| 国产精品一线天粉嫩av| 青青草久久爱| 亚洲久久久久| 亚洲有吗中文字幕| 大片网站久久| 日本精品在线播放|