日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Solar

Friday
15 Nov 2024

Digital Twin for Autonomous Aerial Monitoring of PV Power Plants

15 Nov 2024   

An international research team has created a digital twin that purportedly enables analysis of different scenarios on PV plants’ aerial monitoring. The new tool is claimed to reduce the risk associated with real-world experimentation and help identify the most effective strategies to improve PV system monitoring.

An international research team has created a digital twin (DT) platform for testing autonomous aerial monitoring of large-scale PV power plants. DTs are virtual representations of physical systems, allowing operators and researchers to assess scenarios without the risk associated with real-world experimentation.

“The novel digital twin-based solution called Digital-PV has been developed for the simulation and managed execution of autonomous aerial monitoring of PV power plants,” the researchers explained. “It provides a virtual testing platform for autonomous flights and missions, including boundary detection, path planning, and fault detection along with data generation capabilities for developing data-driven monitoring and inspection models.”

The DT was based on Unreal Engine (UE) created by US-based video game company Epic Games to develop game environments. The scientists created a 4 km2 area with minor terrain variations and natural elements, with atmospheric and lighting settings being adjusted to emulate real-world lighting.

“To add plant components such as PV panels and wind turbines to the level, we acquired the required assets and 3D models, including a wind turbine and a PV panel prototype, from 3D model marketplaces,” the group added. “The UE built-in static mesh editor was used to create custom meshes of bird droppings in various shapes and sizes, which were used as fault characters.”

The company used Microsoft's AirSim simulator to simulate an aerial robot in the simulated environment. It was set to record RGB images, identify bird dropping, descend to the location of the fault, and capture an image of the surface of the probably defective panel. These images can then be used to train artificial intelligence (AI) fault detection models.

“One of the challenges in utilizing AI techniques is acquiring a significant amount of annotated data. This is because publicly available datasets are quite limited,” said the academics. “We demonstrate the potential of Digital-PV in generating datasets for developing monitoring models. To do this, bird droppings were used as an example fault, while other defects are planned to be included in the future.”

Overall, the aerial robot took pictures of 2,469 simulated PV samples with bird droppings. It used an encoder-decoder-based fully convolutional network (FCN) architecture, adapted from the VGG16 model, for fault detection. Around 85% of the images were allocated for model training, 10% for validation during the training process, and 5% for testing.

The scientists found that the average accuracy for training and validation was obtained as 98.31% and 97.93%, respectively, which they said demonstrates that the trained model can accurately locate birds dropping on PV modules with an average accuracy of 95.2% for test data.

The DTs can also be used to evaluate AI boundary extraction, that is, identifying the PV plant in relation to the surroundings. The team also demonstrated that they can be used to test the path planning models. For the boundary extraction, they used classical image processing (CIP) and a deep learning (DP) based model, while for the path planning, they used algorithms from scientific literature. However, the quantitative results of those tests were not presented.

“By assessing their performance and effectiveness, we gain valuable insights into their capabilities and potential real-world performance,” concluded the scientists. “This analysis contributes to advancing AI base solutions for aerial monitoring of PV plants, enabling more efficient inspection and maintenance of these critical renewable energy infrastructures.”

The digital twin was presented in “Digital-PV: A digital twin-based platform for autonomous aerial monitoring of large-scale photovoltaic power plants,” published in Energy Conversion and Management. It was proposed by scientists from Iran's Amirkabir University of Technology, the University of Isfahan, Canada's Concordia University, Norway's Norwegian University of Science and Technology (NTNU), and Germany's Albert Ludwigs University of Freiburg.

More News

Loading……
久久天堂久久| 国产精品一区二区果冻传媒| 在线免费观看的av网站| 香蕉久久aⅴ一区二区三区| 国产在线美女| 国产精品99久久久久久似苏梦涵 | 国产一区丝袜| www555久久| 一区二区电影| 国产激情一区二区三区| 国产午夜三级一区二区三| 26uuu国产电影一区二区| 亚洲777理论| 欧美日韩一区二区三区在线免费观看 | 日韩一级二级| 精品视频91| 激情综合色播激情啊| 欧美怡红院视频| 欧洲一区二区三区在线| 99视频免费| av在线播放资源| 黄色免费观看网站| 丁香婷婷在线| 欧美电影在线观看完整版| 日韩精品一级中文字幕精品视频免费观看| 欧美三级电影一区| www.豆豆成人网.com| 99久久久免费精品国产一区二区| 一区二区三区鲁丝不卡| 欧美精品xxxxbbbb| 日韩欧美一区二区在线视频| 中文字幕电影在线| 欧美成人黄色| 麻豆免费精品视频| 中文字幕av免费专区久久| 久草精品在线观看| 热久久一区二区| 久久先锋影音| 国产麻豆视频精品| 成人av在线资源网| 九七伦理97伦理| 女生影院久久| 欧美日韩色图| 成人网在线免费视频| 欧美中文字幕一区二区三区亚洲 | 精品国产乱码久久久久久老虎| 天天操综合网| 免费观看v片在线观看| 国产精品sm| 亚洲午夜一区二区三区| 精品国产免费视频| yellow字幕网在线| 亚洲五月婷婷| 欧美日韩国产一二三| 欧美日韩国产v| 91欧美一区二区| 日韩三区在线观看| 麻豆视频免费网站| 超碰在线国产| 97精品国产99久久久久久免费| 国产成人aa在线观看网站站| 黑丝一区二区| 精品国产免费一区二区三区四区 | 国产韩日精品| 欧美视频免费在线观看| 一本久久综合| 女人让男人操自己视频在线观看| 黄色一区二区在线观看| 欧美人妖视频| 26uuu另类欧美亚洲曰本| 91精选在线| 99精品国产一区二区三区| 欧美亚洲愉拍一区二区| 免费在线国产视频| 国产精品久久777777毛茸茸| 精品国产亚洲在线| 日本欧美不卡| 精品国产一区二区在线观看| 黄在线免费观看| 91精品啪在线观看国产爱臀| 黄网站免费久久| 欧美年轻男男videosbes| 精品一区二区三区中文字幕| 欧美午夜片欧美片在线观看| 超碰国产精品一区二页| 成人高清av在线| 91豆花视频在线播放| jizz一区二区| 精品日韩在线| 一广人看www在线观看免费视频| 欧美日韩一区中文字幕| 韩国视频一区二区| 日本妇女一区| 番号集在线观看| 国产欧美日本一区二区三区| 丁香一区二区三区| 四虎国产精品免费久久| 国产69精品久久777的优势| 久草在线视频网站| 91片在线免费观看| 久久天堂av| 色综合久久久久网| 未满十八勿进黄网站一区不卡| 日韩国产精品久久久久久亚洲| 校园春色欧美| 久久久综合网站| 日韩av影院| 欧美影院午夜播放| 色喇叭免费久久综合| 欧美成人免费网站| 久久9热精品视频| 色先锋影音岛国av资源| 91青青国产在线观看精品| 欧洲性视频在线播放| 台湾天天综合人成在线| 一二三区高清| 色婷婷精品大在线视频 | 啊v在线视频| 日本一区二区视频在线观看| 91精品一区| 91精品国产高清一区二区三区| 国内精品偷拍| 九九热视频在线观看| 国产精品水嫩水嫩| 国内精品美女在线观看| 中文字幕免费高清电视剧网站在线观看| 丝袜亚洲另类丝袜在线| 毛片av在线| 国产精品女主播av| 欧美禁忌电影| 日韩视频一区二区三区四区| 日韩脚交footjobhd| 天天射综合影视| 欧美日韩亚洲一区三区| 日韩色性视频| 日本在线观看视频| 青娱乐精品视频| 芒果视频成人app| 午夜在线观看视频网站| 中文字幕一区二区三区四区 | 欧美性高跟鞋xxxxhd| 国产永久精品大片wwwapp| 成年人黄视频网站| 久久精品水蜜桃av综合天堂| 91精品秘密在线观看| 国产欧美久久久久久久久| 精品女同一区二区三区在线播放| 日韩影视在线观看| 丁香花高清电影在线观看完整版| 亚洲婷婷国产精品电影人久久| 99国产精品一区二区| 伊人久久视频| 丁香花在线电影小说观看| 欧美在线啊v一区| 97久久精品人人做人人爽50路| 爽好久久久欧美精品| 天堂av一区二区三区在线播放| 日韩欧美一卡二卡| 国产精品久久久久国产精品日日| 一区二区日韩免费看| 成人免费在线电影网| 亚洲欧美se| 成人午夜在线影视| 1769在线观看| 国产美女一区视频| 动漫3d精品一区二区三区乱码| 久久精品高清| 卡通动漫国产精品| 中文字幕中文字幕在线中高清免费版 | 欧美午夜视频在线观看| 日韩电影在线一区| 波多野结衣在线观看一区二区| 国产亚洲一区二区三区不卡| 人妖一区二区三区| 婷婷综合五月| 久色成人在线| 麻豆精品在线播放| 国产午夜一区二区三区| 日韩码欧中文字| 欧美日韩综合在线| 男人插曲女人视频免费| 在线观看成人网| 欧美大片一区二区三区| 欧美一级一级性生活免费录像| 精品视频资源站| 777亚洲妇女| 午夜影院观看视频免费| 污网站在线观看视频| 在线观看国产原创自拍视频| 亚洲图片88| 新天天拍日日拍狠狠拍| 国产精品一区二区在线观看不卡| 免费欧美一区| 国产综合精品一区| 日韩福利电影在线观看| 国产精品视频第一区| 欧美视频精品在线观看| 怡红院av在线| 香蕉成人在线| 欧美另类女人|