日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Hydrogen

Friday
20 Dec 2024

New Strategies to Enhance Catalyst Stability in Green Hydrogen Production

20 Dec 2024   

An international team of researchers from Forschungszentrum Jülich, Lawrence Berkeley National Laboratory, Imperial College London and others, are refining the design principles of metal exsolution catalysts to drive advancements in renewable energy technologies.

Efficient and durable low-cost catalysts are essential for green hydrogen production and related chemical fuels production, both vital technologies for the transition to renewable energy. Research in this field increasingly focuses on metal exsolution reactions to fabricate catalysts with improved properties. A new study led by Forschungszentrum Jülich, in collaboration with international institutions, has unveiled how oxygen vacancies in oxide materials influence the stability of metal nanoparticles on the surface of such materials, which are critical to catalyst performance. The findings, published in Nature Communications, reveal practical strategies to enhance catalyst durability and make green hydrogen production more competitive.

Scientific Results

The study focused on the process of metal exsolution, a relatively new procedure where metal dopants initially part of the oxide lattice in oxide materials are released during thermal reduction to form nanoparticles on the oxide surface. These nanoparticles, in combination with the oxide substrate, create highly active interfaces that are crucial for catalyzing electrochemical reactions, such as water splitting for green hydrogen production.

The researchers demonstrate that oxygen vacancies—defects in the oxide crystal lattice where oxygen atoms are missing—play a pivotal role in nanoparticle stability. Oxides with high concentrations of oxygen vacancies that are used, for example, in fuel cells and electrolyzer cells, exhibit increased surface mobility of nanoparticles at elevated temperatures, which are typical for operation, causing them to coalesce into larger particles. This coalescence reduces the density of active sites, thereby diminishing the catalyst's efficiency. Conversely, oxides with lower concentrations of oxygen vacancies stabilize the nanoparticles, preventing coalescence and maintaining catalytic activity over time.

The team also identified a simple yet effective method to mitigate these effects. Introducing water vapor into the reaction environment slightly increases oxygen partial pressure, reducing the number of oxygen vacancies at the interface between the oxide and nanoparticles. This adjustment enhances nanoparticle stability and prolongs catalyst durability. Additionally, modifying the composition of the oxide material to inherently decrease oxygen vacancy concentration provides another viable approach for achieving long-term stability.

Social and Scientific Relevance

These findings have significant implications for the development of renewable energy systems. Exsolution catalysts are being discussed as promising candidates to replace conventional materials, particularly in solid oxide cells. Solid oxide cells are critical for both producing green hydrogen, an essential energy carrier for storage and transport, and converting it back into electricity at the highest efficiency levels. The durability of catalysts directly impacts the economic and operational feasibility of these devices.

Although metal exsolution reactions offer a promising approach for developing catalysts with enhanced properties, the limited durability of these catalysts—prone to structural and chemical degradation under operating conditions—remains a significant barrier to their practical application in green energy technologies. By addressing the issue of nanoparticle coalescence, this research could lead advance the viability of these novel catalysts.

Further Details

The research was a collaborative effort involving 20 scientists from institutions across Germany, the United States, and the United Kingdom. The study began during the collaborative doctoral project of lead author Dr. Moritz L. Weber at Forschungszentrum Jülich’s Peter Grünberg Institute (PGI-7) and Institute of Energy Materials and Devices (IMD-2), in collaboration with Imperial College London, and was supported by a DAAD scholarship. Dr. Weber continued his research as a Collaborative Postdoctoral Fellow at Lawrence Berkeley National Laboratory, working with experts at the Advanced Light Source and Dr. Felix Gunkel’s group at the PGI-7 in Jülich as well as Dr. Dylan Jennings from IMD-2 and colleagues at the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) in Jülich.

The interdisciplinary nature of the study was essential for achieving its results, combining expertise in materials science, catalysis, and electrochemistry. Published in Nature Communications, the study provides actionable strategies for improving catalyst durability through adjustments in reaction conditions and material compositions and represents a significant step forward in the development of technologies for renewable energies.

More News

Loading……
经典三级在线一区| 小处雏高清一区二区三区| 日韩视频国产视频| 91麻豆精品国产91久久久资源速度 | 中日韩av电影| 国产成人亚洲精品青草天美| 一本色道久久综合亚洲精品酒店| 福利写真视频网站在线| 欧美日韩一区二区在线视频| 午夜欧美2019年伦理| 久久久久久久性| 久久人人视频| 欧美天堂在线观看| 免费在线成人| 日韩毛片免费看| 天天色av.com| 欧美肥妇毛茸茸| 久草在线官网| 日韩欧美亚洲范冰冰与中字| 亚洲成人自拍偷拍| 91精品国产欧美一区二区成人| 激情乱色小说视频| 嫩草香蕉在线91一二三区| 18av在线播放| 国产精品影视| 在线观看免费播放网址成人| 欧美久久一二区| 欧美午夜影院一区| 91久久精品网| 国产精品天干天干在线综合| 精品一区二区三区日韩| 欧美破处大片在线视频| av在线不卡免费看| 欧美人动与zoxxxx乱| 亚洲18女电影在线观看| 午夜精品一区二区三区免费视频| 在线观看一区二区视频| 欧美性xxxx| 成人短视频下载| 欧美日韩一区二区精品| 午夜精品视频一区| 2021av天天| √天堂8资源中文在线| 成人在线免费观看91| 久久亚州av| 成人嫩草影院| 亚洲午夜电影| 盗摄精品av一区二区三区| 91社区在线播放| 成人av手机在线观看| 亚洲天堂一区二区三区四区| 久久久精品区| 91精品在线免费视频| 国语自产精品视频在线看抢先版结局 | 国产精品久久久久久久久免费丝袜| 欧美性猛片aaaaaaa做受| 欧美日韩国产精选| 青青草av免费在线观看| 中文字幕色婷婷在线视频| 捆绑变态av一区二区三区| 日韩一区二区免费在线观看| 精品视频日韩| 日韩欧美国产麻豆| 国内精品国产成人国产三级粉色| 国产视频一区二区在线| 导航福利在线| 韩国三级大全久久网站| 欧美韩国日本| 日韩国产欧美在线视频| 1区2区3区精品视频| 国产黄在线看| 国产精品欧美大片| 精品日产乱码久久久久久仙踪林| 成人无号精品一区二区三区| 色琪琪久久se色| 69久久夜色精品国产69蝌蚪网| 精品欧美日韩精品| 午夜国产精品视频| 午夜久久久久久久久久一区二区| 伊人色综合久久| 免费一级在线观看| 在线观看av黄网站永久| 黄色av日韩| 欧美一二区视频| 欧美18hd| 国产一区二区三区探花| 欧美不卡在线视频| 欧美欧美全黄| 亚洲一区免费视频| 日本在线观看视频| 欧美三级黄美女| 天天色 色综合| 91久久久免费一区二区| 成人在线视频区| 中文字幕欧美一区| 国产精品天堂| 午夜亚洲福利在线老司机| 欧美va亚洲va在线观看蝴蝶网| 国产成人免费9x9x人网站视频| 亚洲婷婷免费| 91成人网在线| 午夜小视频福利在线观看| 国产精品99一区二区| 欧美性猛交xxxx乱大交蜜桃| 爱福利在线视频| 美女一区2区| 国产毛片一区二区| 欧美婷婷六月丁香综合色| 精品176二区| 你懂的成人av| 亚洲午夜久久久久久久久电影院 | 日韩影片在线观看| 国产精品国产自产拍高清av | 9i精品一二三区| 亚洲性人人天天夜夜摸| 亚洲一区二区三区四区在线免费观看 | 999精品视频在这里| 亚洲欧美高清| 成人ssswww在线播放| 一区二区三区四区在线播放| 最新欧美色图| 久久综合色鬼综合色| 日韩一区二区三区高清在线观看| 欧美日韩一区成人| 欧美肥老太太性生活| 久久成人av少妇免费| 91网在线播放| 色综合久久久久综合体桃花网| 亚洲精品国产setv| xxav视频| 亚洲综合成人在线视频| 国产又黄又大久久| 欧美精品二区| 国产精品久久久久久| 欧美办公室脚交xxxx| 成人在色线视频在线观看免费大全| 国产精品美女久久久久久久久 | 99亚洲一区二区| 户外极限露出调教在线视频| 国产真实乱偷精品视频免| 亚洲高清视频中文字幕| vam成人资源在线观看| 精品国产精品网麻豆系列| ww久久中文字幕| 精品国产aⅴ| 一区二区免费在线播放| 欧美日韩国产传媒| 免费人成黄页在线观看忧物| 成人一级视频在线观看| 全部孕妇毛片丰满孕妇孕交| 亚洲综合国产| 视频在线观看免费影院欧美meiju 视频一区中文字幕精品 | 日本黄色一区二区| 亚洲视频1区2区| www.爱久久.com| 亚洲片区在线| 黄色欧美日韩| 加勒比中文字幕精品| 在线看片线路1| 91小视频在线| 欧美阿v一级看视频| 91ph在线| 日韩欧美资源站| 日本视频一区二区三区| 99久久伊人| 一区二区三区四区在线免费视频| 色香蕉成人二区免费| 97视频精品| 天堂av在线免费观看| 国产亚洲精品7777| 7777精品| 日本精品专区| 亚洲线精品一区二区三区八戒| 国产九一精品| 色的视频在线免费看| 日韩精品一区二区三区视频 | 一区二区三区四区日韩| 日本在线中文字幕一区二区三区| 91精品啪在线观看国产60岁| 国产特级嫩嫩嫩bbb| 久久成人麻豆午夜电影| 欧美xxxx少妇| 精品久久久久久亚洲国产300| 婷婷六月综合| 98在线视频| 一区二区三区在线看| 91嫩草亚洲精品| www免费网站在线观看| 国产欧美精品一区二区色综合朱莉| 999久久精品| 2222www色视频在线观看| 91在线视频在线| 久久久亚洲欧洲日产| 亚洲男男gay视频| 国产女主播在线一区二区| 国产精品密蕾丝视频下载| 国产精品久久久久久久龚玥菲 | 国产96在线亚洲| julia中文字幕久久亚洲蜜臀| 久久精品视频免费|