日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Energy Efficiency

Monday
20 Jan 2020

A Smart Way to Predict Building Energy Consumption

20 Jan 2020  by EDGY   

Researchers predicted the energy consumption of buildings using hybrid deep algorithms, computational experiments, and parallel computing.

A team of international researchers has developed a smarter way to predict energy consumption in buildings.

Researchers have always found it challenging to predict how buildings use energy precisely. And that’s because several environmental factors like outdoor temperature, humidity, day of the week, and special events influence how we use energy.

While these environmental parameters may help predict energy consumption, their use is somewhat limited. For example, two identical buildings may exist in a similar setting, and their energy consumption could vary based on how the occupants use the premises.

Even under the same temperature, one building’s HVAC system will eventually use more energy if it hosts an event.

An assistant professor in the Department of Electrical Engineering at the University of Hail‘s Engineering College in Saudi Arabia, Abdulaziz Almalaq explained:

“Prediction using a large number of a building’s operational parameters, such as room temperature, major appliances and heating, ventilation, and air-conditioning (HVAC) system parameters, is quite a complicated problem, compared with prediction using only historical data.”

Almalaq and other researchers from the United States and China soon devised a solution.

Using Hybrid Deep Learning to Predict Energy Consumption

The researchers developed a smarter way to predict energy use through hybrid deep learning algorithms.

The method also involves artificial systems, computational experiments, and parallel computing based on complex, but generic systems. In a test that included real buildings, the team noted that their method improved energy management significantly.

Author of the study, Almalaq noted:

“The analysis performed in this paper showed that the hybrid deep learning model is a powerful artificial intelligence tool for modeling multivariable complex systems.”

Smart buildings are becoming popular today. So, an accurate prediction of external and internal conditions is necessary to improve energy efficiency and management.

The team pointed out that their method has the potential to be applied in various areas. These include smart homes, smart offices, and smart cities.

They published their findings in the IEEE/CAA Journal of Automatica Sinica.

More News

Loading……
亚洲国产精品av| 久久婷婷国产综合国色天香| 久久99精品国产| 日韩欧美网站| 久久精品人人爽人人爽| 在线观看视频色潮| 亚洲人亚洲人色久| 又黄又爽毛片免费观看| 99亚洲一区二区| 免费裸体视频网站| 免费亚洲一区| 最新国产在线观看| 国产九九精品| 欧美天天综合色影久久精品| 能在线观看av网站| 精品久久亚洲| 亚洲欧洲日本一区二区三区| 欧美日在线观看| 国产精品一区二区婷婷| 国产黄色片在线观看| 日本电影久久久| 麻豆精品一区二区三区| 超碰免费在线播放| 免费在线观看成人av| 精品日本高清在线播放| av免费网站在线观看| 麻豆国产91在线播放| 国产成人免费网站| 亚洲成人久久影院| 欧美高清免费| 亚洲成国产人片在线观看| 国产高清不卡| 国产一区成人| 欧美aa在线| 欧美人与z0zoxxxx视频| 91精品精品| 中文字幕一区二区三区域| 最新国产一区| 欧美日韩中文字幕在线| 超碰免费在线播放| 91久色porny| 国内精品卡一卡二卡三新区| 欧美第十八页| 久久综合成人精品亚洲另类欧美| 亚洲电影在线播放| 香蕉视频免费在线播放| 一区二区欧美在线观看| 亚洲免费毛片| 午夜一区二区三区视频| 欧美影院在线| 国产精品人妖ts系列视频| 爱情电影社保片一区| 日韩欧美一区二区三区免费观看 | 在线免费视频你懂得| 91亚洲精品久久久蜜桃| 色综合.com| 欧美色电影在线| 国产精品99一区二区三| 青青青草原在线| 中日韩视频在线观看| 欧美一区二区三区视频| 色小子综合网| 国产九一视频| 午夜精品国产| 成人综合影院| 五月天亚洲一区| 一区二区国产盗摄色噜噜| 超碰成人av| 中文字幕一区二区三区av| 日韩免费一区| 狠狠爱在线视频一区| 高清日韩欧美| 成人性a激情免费视频| 噜噜噜91成人网| 亚洲嫩草精品久久| 久久久免费人体| 精品久久久久久久久久久久包黑料| 久久福利视频一区二区| 粉嫩一区二区三区四区公司1| 一本到av在线| 中文字幕免费中文| 色婷婷狠狠综合| 激情综合色综合久久| 国产亚洲第一伦理第一区| 在线视频se| 国产不卡在线播放| 粉嫩的18在线观看极品精品| 亚洲午夜国产一区99re久久| 欧美专区一区二区三区| 国产二区在线播放| 亚洲精品成人悠悠色影视| 最新国产在线拍揄自揄视频| 蜜桃视频在线观看一区| 国产视频在线看| 国产精品免费久久| 视频一区二区中文字幕| 一道在线中文一区二区三区| 欧美日韩色综合| 精品在线免费观看| 国产精品一区二区av日韩在线| 中日韩一区二区三区| 日韩中文欧美在线| 日韩电影在线观看完整版| 亚洲国产成人在线| 精品产国自在拍| 97超碰免费在线| 欧美14一18处毛片| 91精品国产综合久久精品图片| 欧美 日韩 国产 一区| 91亚洲天堂| 亚洲人吸女人奶水| 99精品国产一区二区三区2021| 婷婷丁香久久五月婷婷| 国产福利一区在线观看| 亚欧日韩另类中文欧美| 你懂的在线网址| 午夜精品久久久久久久99樱桃| 日韩欧美中文| 国产日韩电影| av电影免费在线看| 你懂得网站在线| 亚洲地区一二三色| 久久精品99国产精品| 精品视频一区二区三区在线观看| 日日摸日日添日日躁av| 视频一区欧美日韩| 日韩精品成人在线观看| 毛片.com| 亚洲午夜国产一区99re久久| 中文精品一区二区| 岛国大片在线观看| 91免费观看视频| 国产精品videossex| 欧美一区二区在线免费观看| 自由日本语亚洲人高潮| 精品免费国产二区三区| 欧美日韩国产亚洲一区| 国产深夜视频在线观看| 日本道在线观看一区二区| 99riav一区二区三区| 日韩在线影视| 先锋影音网一区二区| 欧美成人hd| siro系绝美精品系列| 久久se精品一区精品二区| 欧洲一区在线| 污视频网站在线| 欧美成人免费网站| 中文字幕五月欧美| 亚洲精品在线播放| 欧美日韩伦理片| 欧美午夜精品久久久久久浪潮| 亚洲国产老妈| av丝袜在线| 免费男女羞羞的视频网站中文版 | 男人的j进女人的j一区| 国产在线视频网站| 亚洲欧美一区二区视频| 欧美日本一区二区视频在线观看| 少女频道在线观看高清| 日韩一区二区三| 国产精品看片你懂得| 蜜桃传媒麻豆第一区在线观看| 综合视频在线| 亚洲成人不卡| 成人亚洲性情网站www在线观看| 欧美男同性恋视频网站| 亚洲国产精品自拍| 成人久久视频在线观看| 成人精品亚洲人成在线| 99亚洲精品| 亚洲宅男网av| 亚洲国产精品日韩专区av有中文| 久久久夜精品| 国产在线播放一区三区四| 亚洲国产高清一区二区三区| 午夜天堂精品久久久久| 日产午夜精品一线二线三线| 欧美成人直播| 国产情侣久久| 美女视频黄 久久| 成人av在线一区二区三区| 日本一区二区三区高清不卡| 久久蜜桃av一区精品变态类天堂| 国产精品一区二区黑丝| 视频一区在线播放| 欧美三级免费| 粉嫩av亚洲一区二区图片| 色94色欧美sute亚洲线路二| 精品99又大又爽又硬少妇毛片| 在线免费观看黄色网址| 国产亚洲成av人片在线观看| 你懂的在线观看一区二区| 亚洲综合五月| 天堂一区二区在线免费观看| 一区二区三区四区电影| 91在线精品一区二区| 制服丝袜国产精品| 在线观看二区| 色综合久久中文|