日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Energy Efficiency

Friday
29 Jan 2021

Leveraging the Power of AI to Make Solar Power Plants More Efficient

29 Jan 2021  by azocleantech.com   

Computer scientists and energy technology experts from Case Western Reserve University have joined hands to exploit the diagnostic power of artificial intelligence (AI) to improve the efficiency of solar power plants.

Solar power makes use of energy from the sun gathered by photovoltaic (PV) modules to produce clean, renewable energy. According to researchers, improving the efficiency of solar power plants will be beneficial for industry and, ultimately, consumers.

French is also the Director of the Solar Durability and Lifetime Extension Research Center at the Case School of Engineering.

Financially supported by a $750,000 grant for three years from the U.S. Department of Energy (DOE), the research forms part of a wider $130 million solar-technologies initiative launched by the DOE in 2020—which includes $7.3 million exclusively for machine-learning solutions and other AI for solar applications.

The project is co-led by French and Laura Bruckman, research associate professor in Materials Science and Engineering.

Machine Learning and Shared DataIn simple terms, the goal of the Case Western Reserve-led study is to use computers to analyze data from a huge number of neighboring PV systems in a better way to help measure their short- and long-term performance.

Those machine-learning methods will be employed to solve data-quality-related problems that impact the individual plants. To achieve this, the researchers will be using a “spatiotemporal graph neural network model.”

Spatiotemporal approach implies the identification of how plants perform differently in space (solar plants in the cold North versus the hot, dry South, for instance) and time (plants constructed 25 years ago using older technology versus those built newly), and the creation of a model to enhance all the individual PV plants in that group—and future systems.

However, it also relates to evaluating, comparing, and contrasting what has been brand-specific data, noted Bruckman.

“Different companies have information about their technology, in their area of the country,” added Bruckman, “but, until now, we haven’t had a chance to be able to gather and analyze all of the data from a wide range of companies and areas.”

Lastly, Yinghui Wu—researcher, team member, and an assistant professor in the Department of Computer and Data Sciences—added that the study will be useful not just to the solar industry, and eventually energy users, but also to AI researchers.

Wu is also a co-investigator on a National Science Foundation-funded project to enhance cybersecurity of large computer networks.

According to French, the group will work toward collecting and analyzing data this year, then start offering individual power plants and solar-energy companies a “pre-trained computer model” to evaluate how to enhance their own systems.

Background: the SETO 2020 ProgramThe goal of the Solar Energy Technologies Office Fiscal Year 2020 (SETO 2020) funding program is to promote projects that will “improve the affordability, reliability and value of solar technologies on the national grid and tackle emerging challenges in the solar industry.”

It financially supports projects varying from early-stage PV to solar thermal power, while reiterating the integration of various technologies and decreasing the costs related to the installation of solar energy systems.

Moreover, SETO motivates the project groups to forge collaborations with AI experts and industry representatives, like owners or operators of solar power plants, photovoltaic module manufacturers, electric utilities, and others.

The Case Western Reserve team, for instance, will collaborate with Canadian Solar, SunPower, Brookfield Renewable, C2 Energy Capital, and Sandia National Laboratories, apart from other partners.

More News

Loading……
欧美日韩国产中字| 午夜伦理大片视频在线观看| 欧美日韩在线网站| 欧美变态tickle挠乳网站| 天天做夜夜做人人爱精品 | 国产在线黄色| 国产亚洲一区二区三区在线观看| 欧美xxxx少妇| 欧美性色视频在线| 悠悠资源网亚洲青| 国产亚洲成年网址在线观看| 久久亚洲国产精品尤物| 一本大道久久a久久综合婷婷| 久9久9色综合| 你懂的在线免费观看| 91美女在线观看| 日本一区二区乱| 成人18免费| 99久免费精品视频在线观看| 欧美一级大片在线视频| 国产色视频网站| 成年人网站91| 免费一区二区| 色婷婷在线播放| 偷拍25位美女撒尿视频在线观看| 欧美区一区二| 国产日韩精品在线看| 国产美女精品人人做人人爽| 国外成人福利视频| 欧美成人在线直播| 久久影院午夜论| 色999久久久精品人人澡69 | 午夜视频精品| 久青青在线观看视频国产| 亚洲第一久久影院| 欧美日韩爆操| 日韩第二十一页| 九九九伊在人线综合| 在线精品观看国产| 91免费国产在线观看| 欧美88av| 51精品国产| 日本免费视频| 国产亲近乱来精品视频| 日韩深夜福利| 日韩大片在线永久免费观看网站| 日本久久电影网| 91免费版在线| 蜜臀a∨国产成人精品| 国产欧美三级电影| 成人高清免费观看mv| 激情亚洲综合网| 成人性视频免费网站| 中文字幕乱码亚洲无线精品一区| 欧美xnxx| 日韩av官网| av网站在线免费观看| 天天看天天色| 欧美日韩国产综合一区二区| 国产精品欧美一级免费| 成人免费av在线| 国产成人鲁色资源国产91色综| 国产精品porn| 欧美r级电影| 一区在线影院| 韩国av网站在线| 精品欧美不卡一区二区在线观看 | 亚洲图片激情小说| 欧美精品网站| 日韩伦理在线一区| 欧美韩日亚洲| 直接在线观看的三级网址| 日本在线观看网站| 欧美18 19xxx| 精品国精品自拍自在线| 91精品国产品国语在线不卡| 欧美日韩精品综合在线| 欧美日韩亚洲综合一区二区三区| 亚洲超碰精品一区二区| 日韩欧美在线视频日韩欧美在线视频 | 男女激情视频一区| 国产成人三级在线观看| 日韩电影在线免费看| 成人网页在线观看| 亚洲综合视频网| 欧美日韩一区二区三区免费看 | 成人毛片高清视频观看| 全部孕妇毛片丰满孕妇孕| 真不卡电影网| av免费看在线| 成人做爰视频www网站小优视频| 国产成人77亚洲精品www| 精品伊人久久久| 亚洲最新av| 国产精品中文欧美| 亚洲女人的天堂| 欧美日韩在线免费视频| 69国产精品视频| 国产小视频福利在线| 外国成人毛片| 一本综合精品| 综合久久久久久| 奇米四色7777| 成人性生交大片免费看在线播放| 久久福利在线| 性娇小13――14欧美| 中文字幕欧美三区| 制服丝袜影音| 97久久中文字幕| 日韩高清欧美激情| 欧美日韩一区二区精品| 国产福利电影在线| 国产亚洲成av人片在线观黄桃| 激情综合亚洲精品| 欧美精品一级二级| 国产理论在线| 久久国产直播| 色老汉一区二区三区| 丝袜国产在线| 亚洲视频电影在线| 亚洲一区欧美一区| 久久久久久女乱国产| 免费观看久久av| 亚洲一区二区三区精品在线| 在线观看电影av| 久久国产精品久久w女人spa| 午夜电影一区二区三区| 中文字幕免费在线| 杨幂一区二区三区免费看视频| 久久久综合九色合综国产精品| 天天天天天操| 亚洲国产欧美日韩在线观看第一区| 久久综合九色综合欧美就去吻| 特黄特色大片免费视频大全| 国产一区二区精品福利地址| 综合精品久久久| 亚洲最大成人| 91丨九色丨蝌蚪丨老版| 国产二区在线播放| 91久久视频| 日韩日韩日韩日韩| 亚洲视频1区| 九色在线91| 欧美日韩理论| 成人毛片高清视频观看| 自拍自偷一区二区三区| 色天使色偷偷av一区二区| 亚洲成人1区| 中文字幕中文在线不卡住| 深夜在线视频| 亚洲精品水蜜桃| 精品一区二区三区四区五区| 国产精品护士白丝一区av| 女海盗2成人h版中文字幕| 中文字幕 久热精品 视频在线 | 欧美大胆的人体xxxx| 久久久久久电影| 男女啪啪999亚洲精品| 国产精品久久久久久久第一福利| 中中文字幕av在线| 99精品视频免费在线观看| 丝袜中文在线| 有码一区二区三区| 欧美人体视频| 国产精品黄页网站在线播放免费| 一本色道久久综合| 成人免费在线观看| 亚洲国产经典视频| 国产午夜亚洲精品一级在线| 91国产免费观看| 国产精品三上| 欧美少妇另类| 亚洲三级免费电影| 国产区一区二| 日韩视频免费观看高清完整版在线观看| 不卡日本视频| 欧美人xxx| 天天影视网天天综合色在线播放| 日韩有码av| 国产黄色一级电影| 99久久久久免费精品国产| 成人在线视频国产| 日韩欧美一区二区在线视频| 久久国产精品99久久久久久老狼| 国产精品美女久久久久aⅴ| 北条麻妃国产九九九精品小说| 福利视频在线播放| 欧美唯美清纯偷拍| 91香蕉视频污在线| 久久久久亚洲| 乱人伦视频在线| 日本aa大片在线播放免费看| 99久久精品国产麻豆演员表| 国产精品欧美在线观看| xxxx在线视频| 在线国产福利| 欧美三级中文字幕在线观看| 国产精品影视在线观看| 综合色就爱涩涩涩综合婷婷| 大胆人体一区|