日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Hydrogen

Wednesday
13 May 2020

Kobe Team Develops Method for Highly Efficient Hydrogen Production

13 May 2020  by greencarcongress.com   

A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (α‐Fe2O3) photocatalysts.

They were able to raise the conversion rate up to 42% of its theoretical limit (16%) by synthesizing tiny nanoparticle subunits in the hematite. A paper on their work appears in the journal Angewandte Chemie International Edition.

Mesocrystal photoanode formation and photochemical water splitting characteristics. a. Electron microscope image of a hematite mesocrystal (assembled from tiny nano-particles of approx. 5nm). b. Gas production from the anode. c. Graph to show the current density and applied voltage. The anode is the photocatalyst anode, and a platinum electrode was used for the cathode. The potential is based on the RHE (Reversible Hydrogen Electrode). The oxidation potential is 1.23V. The solar water splitting capacity was greatly enhanced by making the nano-particles in the mesocrystal structures smaller. Zhang et al.

Hematite is a type of iron oxide ore. In addition to being safe, inexpensive and stable (pH > 3), Hematite can absorb a wide range of visible light (approx. under 600nm). The theoretical limit of its solar energy conversation efficiency is 16% (a photocurrent density of 13 mA cm-2).

Tachikawa and his colleagues successfully produced a photoanode with an extremely high conductivity by annealing hematite mesocrystals (superstructures consisting of tiny nanoparticles of approx. 5nm) to a transparent electrode substrate.

Numerous oxygen vacancies were formed inside the hematite mesocrystals by accumulating and sintering tiny highly-orientated nanoparticles of less than 10 nanometers.

Inside the mesocrystal structure, there are spaces where there is no oxygen—i.e., oxygen vacancies (Vo). In hematite, the creation of these oxygen vacancies enhances electrical conductivity because Fe3+ is deoxygenated, becoming Fe2+ (the oxygen molecules move to fill the vacancies). The presence of oxygen vacancies improved the conductivity of the photocatalyst electrode, at the same time giving it a significant surface potential gradient, thereby promoting the separation of electrons and holes.

At the same time a large amount of holes moved to the surface of the particles, allowing a high rate of oxygen evolution from water. The accumulation of holes improved the efficiency of the water oxidation reaction; the slow oxidation of the water has previously been a bottleneck in water-splitting. This enabled the researchers to achieve the world’s highest solar water-splitting performance for hematite anodes.

This strategy can be applied to a wide range of photocatalysts, beginning with solar water-splitting.

In addition to boosting the high efficiency of what is thought to be the world’s highest performing photoanode, this strategy will also be applied to artificial photosynthesis and solar water-splitting technologies via collaborations between the university and industries.

Previously, Tachikawa and his colleagues developed mesocrystal technology, which involves precisely aligning nanoparticles in photocatalysts to control the flow of electrons and their holes.

They produced the mesocrystal photoanodes by coating a transparent electrode substrate with hematite mesocrystals containing titanium and then annealing them at 700 ºC. A co-catalyst was deposited on the surface of the mesocrystals. When the photocatalysts were placed in an alkaline solution and illuminated with artificial sunlight, the water-splitting reaction took place at a photocurrent density of 5.5 mA cm-2 under an applied voltage of 1.23V.

The key to achieving a high conversion rate is the size of the nanoparticles that make up the mesocrystal structure. It is possible to greatly increase the amount of oxygen vacancies that form during the sintering process by making the nanoparticles as small as 5 nm and increasing the connecting interfaces between the nanoparticles. This boosted the electron density, and significantly increased the conductivity of the mesocrystals.

Next, the researchers will collaborate with industries to optimize the hematite mesocrystal photoanodes and implement an industrial system for producing hydrogen from solar light. At the same time, the strategy developed by this study will be applied to various reactions, including artificial photosynthesis.

More News

Loading……
成人免费网址| 国产成人免费在线| 精品一区二区三区中文字幕| 久久久人成影片一区二区三区在哪下载| 欧美另类极品| 在线不卡免费av| 亚洲不卡在线观看| 欧美亚洲一区二区三区四区| 黄污网站在线观看| 亚洲欧美久久精品| 2021国产精品久久精品| 日本黄在线观看| 精品成人久久| 国产盗摄女厕一区二区三区| 亚洲色图欧美| 999精品视频在线观看| 精品视频二区| 天天av综合网| 国产精品日本一区二区不卡视频| 校花撩起jk露出白色内裤国产精品| 成人av电影免费观看| 日韩一区二区三区电影| 亚洲成人毛片| 成人网页在线观看| 九色porny蝌蚪视频在线观看| 日韩大陆av| 26uuu亚洲综合色| 精品999视频| 国产主播性色av福利精品一区| 国产精品影音先锋| 欧美乱妇15p| 欧美日韩视频网站| 99精品视频免费全部在线| 久久久精品欧美丰满| 在线黄色av| 国产一区2区| 亚洲欧美bt| 久久99精品国产91久久来源| 久久久久久久久久久久久夜| 色天天综合久久久久综合片| 欧美在线免费视屏| 最新在线地址| 少妇性bbb搡bbb爽爽爽欧美| 国产精品视频二区三区| 香蕉久久夜色精品国产更新时间| 国产一区不卡精品| 欧美www视频| 小明精品国产一区二区三区| 另类专区亚洲| 99久久www免费| 日本欧美加勒比视频| 久久久www免费人成精品| 亚洲永久视频| 伊人久久综合| 国产麻豆9l精品三级站| 怡红院在线播放| 成人免费视频77777| 色影院视频在线| 精品一区电影| 国产欧美日韩中文久久| 精品日产卡一卡二卡麻豆| 亚洲免费视频一区二区三区| 日韩中文字幕| 中国女人久久久| 久久精品亚洲一区二区三区浴池| 欧美午夜精品一区二区蜜桃| 色影院视频在线| 国产1区2区3区在线| 免费国产在线视频| 国产一区精品福利| 久草亚洲一区| 国产传媒在线视频| 激情小说一区| 99精品热视频| 制服黑丝国产在线| 免费成人高清在线视频| 正在播放日韩欧美一页| 日本一区二区动态图| 在线观看区一区二| 亚洲三级在线| 亚州黄色一级| 国产精品国产三级国产aⅴ原创 | 91视频精品在这里| 邻居大乳一区二区三区| 久久精品国产www456c0m| 国产精品自拍av| 国产青青草在线| 最新亚洲视频| 精品美女国产在线| 国产超级va在线视频| 美女福利一区| 国v精品久久久网| 欧美精品三级在线观看| 尤物在线网址| 极品少妇一区二区三区| 国产精品综合久久| 欧美日韩激情小视频| wwww亚洲| 精品无人乱码| 天堂av在线电影| 国产精品18久久久久久久久| 婷婷婷国产在线视频| 午夜在线视频观看日韩17c| 日韩欧美精品在线| 欧美一级二级三级视频| 亚洲视频网在线直播| 生活片a∨在线观看| 国产在线精品一区二区不卡了| 黄色成人免费观看| 影音先锋国产精品| 午夜激情在线观看| 中文字幕欧美一区| 久久久xxx| 一本到不卡免费一区二区| 在线观看日韩精品| av在线不卡顿| 日韩欧美中文字幕一区| 综合久久十次| 亚洲制服丝袜av| 青青久草在线| 美女爽到呻吟久久久久| 国产剧情一区二区三区| 久久中文字幕电影| 欧美久久亚洲| 可以看美女隐私的网站| 国产欧美三级| av在线免费一区| 国产人成亚洲第一网站在线播放| 香蕉成人app免费看片| 久久综合久久综合亚洲| 成人av免费电影网站| 中文字幕在线一区二区三区| 国产欧美日韩影院| 欧美精品丝袜中出| 无码一区二区三区视频| 成人日韩欧美| 精品国产99国产精品| 午夜激情一区二区三区| 亚洲少妇30p| 狠狠狠色丁香婷婷综合久久五月| 亚州av日韩av| 国产综合视频一区二区三区免费| 婷婷色播视频| 欧美一区日韩一区| 6080日韩午夜伦伦午夜伦| 欧美日韩在线视频观看| 2020国产精品久久精品美国| 美女视频网站久久| 亚洲澳门在线| 成午夜精品一区二区三区软件| 欧美精品自拍偷拍动漫精品| 亚洲美女少妇撒尿| 成人一区二区三区在线观看| 残酷重口调教一区二区| 性高爱久久久久久久久| 99re在线视频| 三级短视频在线| 久久国产成人午夜av影院| 欧美日韩国产v| 99热免费在线| 国产精品美女久久久久高潮| 激情婷婷欧美| 成人在线高清| 久蕉依人在线视频| 51精品秘密在线观看| 高潮白浆女日韩av免费看| 99久久免费视频.com| 国产91在线精品| 日韩另类视频| 精品国产亚洲一区二区三区| 欧美三级网址| 中文字幕av一区二区三区人| 蜜臀av一区二区在线观看| 久久久精品tv| 精品久久久久久中文字幕| 国产精品一区二区三区网站| 国产精品日韩欧美一区| 91精品丝袜国产高跟在线| 中文字幕一区免费| 亚洲视频资源在线| 国产乱码精品一区二区三区忘忧草| 欧美日韩激情| 国产亚洲精品v| 欧美一级免费| www.成人| 中文字幕系列一区| 日韩护士脚交太爽了| 欧美电影在线观看网站| 女子免费在线观看视频www| av毛片免费看| 欧美浪妇xxxx高跟鞋交| 中文字幕一区在线观看视频| 丁香一区二区三区| 亚洲日本久久| 天天躁日日躁狠狠躁欧美巨大小说| 亚洲高清二区| 中文av字幕一区| 精品成人私密视频| 日韩av首页| 日韩精品丝袜美腿|